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Given an (n+1)-dimensional space U of piecewise smooth functions in which
each basis has a non-vanishing Wronskian, and its dual space U*, a canonical
bilinear form is defined on U_U*, which provides a simple characterization of a
contact of order r�n. An intrinsic reproducing function is introduced, leading to
Marsden-type identities. In the case of Chebyshev spaces connected with totally
positive matrices, the bilinear form yields a general notion of blossom which can be
extended to Chebyshev splines. � 1999 Academic Press

1. INTRODUCTION

The notion of blossom has recently brought a new insight both to the
study of geometric continuity and to that of Chebyshev splines which were
previously developed by different authors (see for instance S. Karlin and
Z. Ziegler [7], L. L. Schumaker [26], P. E. Koch and T. Lyche [8, 9], and
more particularly T. Lyche [12]). Initially introduced by L. Ramshaw
[24, 25] for polynomial splines with parametric continuity conditions, the
blossoming principle has been extended through two different approaches.
The first one, used by H.-P. Seidel for geometrically continuous polynomial
splines [27], then by R. Kulkarni, P.-J. Laurent, and M.-L. Mazure for
Q-splines [10, 18], and later by H. Pottmann [22, 23, 29] for splines based
on a given Chebyshev space (see also M.-L. Mazure and H. Pottmann
[21], M.-L. Mazure [14, 16, 17], and M.-L. Mazure and P.-J. Laurent
[20]), relies on geometric properties: the blossom is defined by means of
intersections of convenient osculating flats. A second one, of a more
algebraic nature, originates from the de Boor�Fix formula [3] and has first
been developed by P. J. Barry in the case of splines with sections in
arbitrary Chebyshev spaces [1]. On the other hand, several recent papers
are devoted to Marsden's identity, dual bases and blossoming (see for
instance P. J. Barry et al. [2], Y. Stefanus and R. N. Goldman [28],
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R. N. Goldman [5], and E. T. Y. Lee [11]). Extending the idea developed
by M.-L. Mazure and P.-J. Laurent [19] for a single space, the present
paper merges all these results and shows that in fact most of them are still
valid in a more general framework, namely that of piecewise smooth
W-spaces.

By a W-space we mean a finite dimensional space of C� real valued
functions defined on an interval, one basis of which has a nonvanishing
Wronskian. Consider a subdivision t0<t1< } } } <tq<tq+1 of the interval
I=[t0 , tq+1], and denote by S the space of all functions defined on I
whose restrictions to the subintervals [tl , t l+1] belong to given (n+1)-
dimensional W-spaces, and in which, for l=1, ..., q, the left and right
derivatives up to order nl (0�nl�n) at tl are linked by a regular (nl+1)_
(nl+1) connection matrix Al . It is always possible to complement these
matrices Al into (n+1)_(n+1) regular ones such that the corresponding
space U is included in S. With such an (n+1)-dimensional piecewise
smooth W-space U we can associate a dual space U* of the same nature,
a canonical bilinear form [ } , } ] on U_U*, and a reproducing function E
defined on I_I. These latter two notions are connected by the relations

[U, E(x, } )]=U(x), [E( } , y), U*]=U*(y) x, y # I. (1.1)

The canonical bilinear form provides a simple and elegant characterization
of the (left or right) contact of order r�n between two elements F, G # U:

F (i)(a=)=G (i)(a=), i=0, ..., r

� [F, 9*]=[G, 9*] for all 9* # U* vanishing on (a=)n&r.

(1.2)

Furthermore, the reproducing function E leads to a Marsden-type identity:
given a basis S&n , ..., Sm of S, there exist W*&n , ..., W*m # U* such that

E(x, y)= :
m

i=&n

S i (x) Wi*(y), x, y # I. (1.3)

Sections 2, 4, 5 of the present paper extend to the case of piecewise
smooth spaces the theory developed in [19], in which we considered a
single C� space, and the results are applied to the study of splines in
Sections 3 and 6. More precisely, Section 2 is devoted to the duality principle
between piecewise smooth W-spaces, that is when two (n+1)-dimensional
consecutive W-spaces are connected by an (n+1)_(n+1) matrix, while
Section 3 deals with the notion of W-splines corresponding to connection
matrices of lesser orders. In Section 4 we consider the particular case of a
piecewise smooth Chebyshev space, i.e., a piecewise smooth W-space each
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section of which is a Chebyshev space. In Section 5, we suppose that such
a space U contains the constant functions, and, most important, that the
connections are defined by totally positive matrices applied on the classical
differential operators related to the Chebyshev spaces involved. Then, using
a result of P. J. Barry [1], a blossom can be defined in U by means of the
canonical bilinear form:

f (x1 , ..., xn) :=[F, 9*T], (1.4)

where 9*T is the unique element of U* which vanishes (with multiplicities)
on T=(x1 , ..., xn) and satisfies the normalization condition [1, 9*T]=1.
The characterization of contact stated in (1.2) enables the extension of the
notion of blossom to the corresponding spline spaces: this is the subject of
Section 6. Finally, in Section 7, we connect this algebraic approach with the
geometrical one investigated in [17].

2. DUALITY BETWEEN PIECEWISE SMOOTH SPACES

Throughout this paper, we consider q+2(q�0) fixed abscissae t0<t1<
t2 } } } <tq<tq+1 ; we denote the whole interval by I :=[t0 , tq+1] and the
subintervals by Ii :=[ti , ti+1], i=0, ..., q.

2.1. Piecewise Smooth W-Spaces

A function U: I � R will be said to be piecewise smooth on I if U # C 0(I)
and if, for i=0, ..., q, its restriction to Ii belongs to C�(Ii). Moreover, in all
the formulae to come, given x # I, the notation x= is to be read either as x+

or as x& when x is one of the ti's, i=1, ..., q (only x+ if x=t0 , x& if
x=tq+1); otherwise it can be replaced by x.

Given n+1 functions U0 , ..., Un , assumed to be piecewise smooth on I,
setting U9 :=(U0 , ..., Un)T, given x= # I, let us introduce the following square
matrix of order n+1:

WU9 (x=) :=\
U0 (x) U$0 (x=) } } } U (n)

0 (x=)

+ . (2.1)U1 (x) U$1 x=) } } } U (n)
1 (x=)

b b . . . b
Un (x) U$n (x=) } } } U (n)

n (x=)

The Wronskian (possibly left or right) of these functions is then defined by

W(U0 , ..., Un)(x=) :=det WU9 (x=). (2.2)
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Definition 2.1. Let U be an (n+1)-dimensional space of piecewise
smooth functions defined on I, and let (U0 , ..., Un) be a basis of U. Then,
U is said to be a piecewise smooth W-space on I if

W(U0 , ..., Un)(x=){0 for all x= # I. (2.3)

Clearly, this definition does not depend on the chosen basis. Actually, it
means that a function U # U is uniquely determined by knowing

2nU(a=) :=(U(a), U$(a=), ..., U (n)(a=))T (2.4)

for any given a= # I. Accordingly, for a given integer r, &1�r�n, the set
of all elements of U vanishing on (a=)r+1 (i.e., which satisfy U ( j )(a=)=0 for
j=0, ..., r) is an (n&r)-dimensional subspace of U.

When q=0, a piecewise smooth W-space on I will be said to be a
W-space on I. A more explicit description of piecewise smooth W-spaces is
given in the following proposition.

Proposition 2.2. Let U be a space of functions defined on I, and Ui its
restriction to Ii , i=0, ..., q. Then, U is an (n+1)-dimensional piecewise
smooth W-space on I iff the following two conditions are satisfied:

(i) for i=0, ..., q, Ui is a (n+1)-dimensional W-space on Ii ,

(ii) there exist q regular square matrices of order n+1, say M1 , ..., Mq ,
with (1, 0, ..., 0) as the first row, such that, for all U # U,

2nU(t+
l )=Ml } 2nU(t&

l ), l=1, ..., q. (2.5)

Proof. Let (U0 , ..., Un) be a basis of a given (n+1)-dimensional
piecewise smooth W-space U on I. Then, for any U=�n

i=0 :iUi # U, any
x= # I, we have

2nU(x=)=WU9 (x=)T } (:0 , ..., :n)T.

Applying this relation with x==t&
l and x==t+

l (1�l�q) leads to (2.5)
with Ml :=WU9 (t+

l )T } WU9 (t&
l )&T. Since the two matrices WU9 (t+

l ) and
WU9 (t&

l ) are regular, so is Ml . Moreover, the space U being contained in
C 0(I ), it results from (2.5) that the first row of M l is (1, 0, ..., 0).

Conversely, assume (i) and (ii) to be satisfied. Due to the assumption on
the first row of each Ml , U is a subspace of C 0(I ). Thus, in fact it only
remains to prove that it is (n+1)-dimensional. Indeed, it is sufficient to
check that the only element U # U satisfying 2n U(t0)=0 is zero. The space
U0 being an (n+1)-dimensional W-space on I0 , if 2nU(t+

0 )=0, then the
restriction of U to I0 is necessarily zero. On account of (2.5), it will be
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possible to similarly prove, step by step, that its restriction to each interval
Ii is also zero. K

For example, given q matrices M1 , ..., Mq as in (ii), the space of all
piecewise polynomial functions of degree less than or equal to n that satisfy
(2.5) is an (n+1)-dimensional piecewise smooth W-space on I.

2.2. The Dual Space of a Piecewise Smooth W-Space

From now on, U will denote a given (n+1)-dimensional piecewise
smooth W-space on I, and (U0 , ..., Un) a basis of U. Then, for a given
x= # I, the n+1 following relations, in which ( } , } ) stands for the inner
product in Rn+1,

(U9 (i)(x=), U9 *(x=))={0 for i=0, ..., n&1,
1 for i=n,

(2.6)

uniquely define a vector U9 *(x=)=(U0*(x=), ..., Un*(x=))T, obtained by
solving the linear system of order n+1

WU9 (x=)T } U9 *(x=)=(0, ..., 0, 1)T. (2.7)

The system (U0*, ..., Un*) so defined is called the dual system of
(U0 , ..., Un) and the space U* :=span(U0*, ..., Un*) the dual space of U. This
space U* can be shown not to depend on the basis (U0 , ..., Un).

Proposition 2.3. Let Ml , l=1, ..., q, be the connection matrices involved
in the (n+1)-dimensional piecewise smooth W-space U. Assume that the last
column of each matrix Ml is equal to (0, ..., 0, 1)T. Then, the dual space U*
of U is also an (n+1)-dimensional piecewise smooth W-space on I, and
U**=U.

Proof. Observe first that, for l=1, ..., q, the fact that the last column of
matrix Ml is equal to (0, ..., 0, 1)T is necessary and sufficient to ensure the
equality U9 *(t+

l )=U9 *(t&
l ). Thus, the vector valued function U9 * is well-

defined on I. Moreover, as it is obtained by solving (2.7), it is C� on each
subinterval, hence it is piecewise smooth on I.

Furthermore, by using a recursive argument, differentiating (2.6) on each
subinterval leads to the following relations for all x= # I:

(U9 (i)(x=), U9 *( j )(x=))={0
(&1) j

for i+ j�n&1,
for i+ j=n.

(2.8)

Let us consider the square matrix Z(x=) of order n+1 defined by

(Z(x=)) i, j :=(U9 (i)(x=), U9 *( j )(x=)) , x= # I, (2.9)
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or, equivalently, by

Z(x=) :=WU9 (x=)T } WU9 * (x=). (2.10)

Then, relations (2.8) mean that Z(x=) has the structure

Z(x=)=\
0 } } } } } } 0 (&1)n

+ . (2.11)
b b (&1)n&1 }

. . .
} }

0 &1

1 } } }

Since Z(x=) is regular for any x= # I, so is WU9 * (x=), which means that the
Wronskian W(U0*, ..., Un*)(x=) never vanishes on I. Hence, the space U* is
also an (n+1)-dimensional piecewise smooth W-space on I.

Actually, the case i=0 in (2.8) shows that the dual system of
(U0*, ..., Un*) is equal to (&1)n (U0 , ..., Un). As an immediate consequence,
the dual space of the dual space U* is the initial space U. K

Let us observe that, on account of (2.10), for any function U* of the
dual space U*, the connection at tl will be given by

2nU*(t+
l )=Ml* } 2nU*(t&

l ), l=1, ..., q, (2.12)

where Ml* is the following regular square matrix of order n+1:

Ml* :=Z(t+
l )T } M&T

l } Z(t&
l )&T. (2.13)

2.3. Reproducing Function and Canonical Bilinear Form

Let us denote by M the set of all regular matrices of order n+1 which
have (1, 0, ..., 0) as the first row and (0, ..., 0, 1)T as the last column. From
now on, we shall always suppose that the connection matrices M1 , ..., Mq

all belong to M. Then, given a basis (U0 , ..., Un) of U and its dual system
(U0*, ..., Un*), we can consider the function E: I_I � R defined by

E(x, y) :=(U9 (x), U9 *(y))= :
n

i=0

Ui (x) Ui*(y), x, y # I. (2.14)

Lemma 2.4. There exists a unique bilinear form [ } , } ] on U_U* such
that

[U, E(x, } )]=U(x) for all U # U and all x # I. (2.15)

It is the nondegenerate bilinear form characterized by

[Ui , Uj*]=$ij for all i, j=0, ..., n. (2.16)
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Proof. Let us first denote by [ } , } ] the bilinear form defined on U_U*
by (2.16). Then, any U # U, and any U* # U* can be written as

U= :
n

i=0

[U, U i*]Ui , U*= :
n

i=0

[U i , U*]U i*. (2.17)

For x # I, E(x, } ) being the element of U* defined by E(x, } )=�n
i=0 Ui (x)Ui*,

we have Ui (x)=[Ui , E(x, } )], i=0, ..., n, which yields (2.15) by linearity.
Since the functions (U0 , ..., Un) are linearly independent, one can select

x0 , ..., xn # I so that the square matrix A of order n+1 defined by
Ai, j :=U j (xi), i, j=0, ..., n, is regular. The equality

(E(x0 , } ), ..., E(xn , } ))T=A } (U0*, ..., Un*)T

proves that (E(x0 , } ), ..., E(xn , } )) is a basis of U*. Similarly, it is possible
to select n+1 points y0 , ..., yn in I such that (E( } , y0), ..., E( } , yn)) form a
basis of U.

A bilinear form [ } , } ] on U_U* is thus completely determined as soon
as the quantities [E( } , y j), E(xi , } )], i, j=0, ..., n, are known. If [ } , } ] is
assumed to satisfy (2.15), we necessarily have

[E( } , y j), E(xi , } )]=E(x i , y j), i, j=0, ..., n, (2.18)

which proves the unicity of such a bilinear form. K

Lemma 2.5. Given x=, y=$ # I, E( } , y) is the only element U # U such that

2nU(y=$)=(0, ..., 0, 1)T, (2.19)

while E(x, } ) is the only element U* # U* such that

2nU*(x=)=(0, ..., 0, (&1)n)T. (2.20)

Proof. From (2.14), we can calculate the (possibly left or right) partial
derivatives of E as

�1i2 j E(x=, y=$)=(U9 (i)(x=), U9 *( j )(y=$)) , x=, y=$ # I. (2.21)

Consequently, relations (2.6) mean that, for a given y=$ # I, the function
U :=E( } , y) satisfies (2.19). Moreover, U being an element of the piecewise
smooth W-space U, it is completely determined by (2.19).

Similarly, (2.20) can be derived from (2.21) and (2.8). K

Let us mention that N. Dyn and A. Ron have already introduced the
function defined by (2.19) when U is a W-space [4].
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Theorem 2.6. The function E, the bilinear form [ } , } ] defined by (2.16)
and the matrix Z defined by (2.10) are intrinsic, in the sense that they
depend only on the space U, not on the chosen basis (U0 , ..., Un).

Proof. The fact that E is intrinsic is a straightforward consequence of
the previous lemma. The bilinear form defined in (2.16) being associated
with E, it is also intrinsic. Finally, the same holds for Z, on account of the
equality

(Z(x=)) ij=�1i 2 j E(x=, x=) for all x= # I. K (2.22)

Definition 2.7. The function E and the bilinear form [ } , } ] will be
called the reproducing function and the canonical bilinear form associated
with the piecewise smooth W-space U, respectively.

Let us observe that, symmetrically, the canonical bilinear form also
satisfies the reproducing property

[E( } , y), U*]=U*(y) for all U* # U* and all y # I. (2.23)

Remark 2.8. In the particular case of an (n+1)-dimensional piecewise
polynomial W-space on I, it follows from (2.19) that

E(x, y)=(x&y)n�n! (2.24)

as soon as x and y belong to the same subinterval Ii . Therefore, (2.22)
shows that, for all x= # I,

Z(x=)=R, (2.25)

where R stands for the antidiagonal matrix of order n+1 such that
Ri, j=(&1) j for 0�i�n, i+ j=n. The existence of this particular function
E has been pointed out by P. J. Barry et al. by using a different argument [2].

We conclude this subsection with the following result.

Proposition 2.9. Let U0 , ..., Un be n+1 elements of U, and V0*, ..., Vn*
be n+1 elements of U*. Then the following three properties are equivalent

(i) E(x, y)=�n
i=0 Ui (x) Vi*(y) for all x, y # I,

(ii) [Ui , Vj*]=$ij , i, j=0, ..., n,

(iii) (U0 , ..., Un) is a basis of U and (V0*, ..., Vn*) is its dual system.

Proof. Taking into account both Theorem 2.6 and (2.16), the equiv-
alence between (ii) and (iii) is clear.
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Suppose that (i) is valid. Then, given U # U, from U(x)=[U, E(x, } )] for
all x # I, we obtain

U= :
n

i=0

[U, Vi*]Ui ,

which proves that (U0 , ..., Un) is a basis of U. As usual, let us denote by
(U0*, ..., Un*) its dual basis. By (2.14) and Theorem 2.6, we have, for any
y # I, E( } , y)=�n

i=0 Ui*(y)Ui . On account of (i), this proves the equality
�n

i=0 Ui*(y)Ui=�n
i=0 Vi*(y)U i , hence V i*=U i*. The converse part is

obvious. K

2.4. Canonical Bilinear Form and Contact

In this subsection, it will be proved that the canonical bilinear form
provides an easy characterization of the (possibly left or right) contact of
order r�n between two elements of U.

Proposition 2.10. For any U # U and any U* # U*, we have, for any
a= # I,

[U, U*]=2nU(a=)T } Z(a=)&T } 2nU*(a=). (2.26)

Proof. Let (U0 , ..., Un) be a basis of U and (U0*, ..., Un*) be its dual
system. Given U=�n

i=0 : iUi # U and U*=�n
i=0 :i*Ui* # U*, we have

2nU(a=)=WU9 (a=)T } (:0 , ..., :n)T,
(2.27)

2nU*(a=)=WU9 * (a=)T } (:0*, ..., :n*)T.

Since, by (2.16), [U, U*]=(:0 , ..., :n) } (:0*, ..., :n*)T, relations (2.27) yield

[U, U*]=2nU(a=)T } WU9 (a=)&1 } WU9 * (a=)&T } 2nU*(a=). (2.28)

Now, according to Theorem 2.6, this quantity is independent of the
basis. For instance, we can choose the basis (U0 , ..., Un) of U characterized
by U ( j )

i (a=)=$ij , i, j=0, ..., n, that is to say, by

WU9 (a=)=Jn+1 . (2.29)

Then, by (2.10) the dual system of this basis satisfies WU9 * (a=)=Z(a=).
Consequently, for this particular choice, (2.28) reduces to (2.26). K

Remark 2.11. In the piecewise polynomial case, using (2.25), formula
(2.26) leads to

[U, U*]=2nU(a=)T } R } 2nU*(a=)
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since R&T=R, i.e.,

[U, U*]= :
n

k=0

U (k)(a=)(&1)n&k U* (n&k)(a=). (2.30)

Note that the right hand sides of (2.26) and (2.30) are necessarily
independent of a= # I.

Corollary 2.12. Suppose that a= # I and let r be an integer such that
0�r�n. Then, a function 9* # U* vanishes on (a=)n&r (i.e., satisfies
9*( j )(a=)=0 for j=0, ..., n&r&1) iff there exist r real numbers *0 , ..., *r&1

such that, for all U # U,

[U, 9*]=*0U(a)+*1 U$(a=)+ } } } +*r&1U (r&1)(a=)

+(&1)n&r 9*(n&r)(a=) U (r)(a=). (2.31)

Proof. Given 9* # U*, formula (2.26) proves that

[U, 9*]= :
n

i=0

*iU (i)(a=) for all U # U, (2.32)

where

(*0 , ..., *n)T :=Z(a=)&T } 2n9*(a=). (2.33)

Now, 9* vanishes on (a=)n&r iff the (n&r) first components of
2n9*(a=) are equal to 0. Taking into account the regularity and the struc-
ture of Z(a=)&T, this occurs iff *r+1= } } } =*n=0. Moreover, in that case,
(2.33) yields *r=(&1)n&r 9*(n&r)(a=), which completes the proof. K

For any subset A of U, the subspace of U* which is orthogonal to A

with respect to the canonical bilinear form will be denoted by A%, namely

A% :=[U* # U* | [U, U*]=0, \U # A]. (2.34)

One can define similarly A*% for any subset A* of U*.

Corollary 2.13. Given an integer r, &1�r�n, and a= # I,

[U # U | U vanishes on (a=)r+1]%=[U* # U* | U* vanishes on (a=)n&r].

(2.35)

Proof. Let us introduce the following subspace of U:

A :=[U # U | U vanishes on (a=)r+1], (2.36)
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which is (n&r)-dimensional. It results from Corollary 2.12 that

[U* # U* | U* vanishes on (a=)n&r]/A%. (2.37)

The canonical bilinear form being nondegenerate, A% is of dimension r+1,
i.e., of the same dimension as the left hand side of (2.37), which leads to
(2.35). K

Two functions F, G # U will be asid to have a contact of order r�n at
a= # I if F (i)(a=)=G (i)(a=) for all i=0, ..., r. The previous corollary provides
the following characterization of this notion of contact.

Theorem 2.14. Two functions F, G # U have a contact of order r�n at
a= # I iff [F, 9*]=[G, 9*] for every function 9* # U* that vanishes on
(a=)n&r.

Proof. Clearly, F and G have a contact of order r at a= iff U :=F&G
belongs to the subspace A defined in (2.36). According to Corollary 2.13,
U belongs to A=A%% iff [U, 9*]=0 for all 9* vanishing on (a=)n&r. K

3. W-SPLINES, CONTACT AND MARSDEN-TYPE IDENTITIES

In the whole section, for l=1, ..., q, Al denotes a regular square matrix
of order nl+1 (0�nl�n), the first row of which is (1, 0, ..., 0). Moreover,
in case nl=n, we additionally require the last column of Al to be
(0, ..., 0, 1)T (which actually means, in that case, that A l # M).

3.1. W-Splines

For all i=0, ..., q, Ui is assumed to be a W-space on Ii . Let us denote
by S the space of all functions S: I � R the restriction of which to Ii

belongs to Ui , for i=0, ..., q, and which satisfy

2nl
S(t+

l )=Al } 2nl
S(t&

l ), l=1, ..., q. (3.1)

Let us define the multiplicity ml at tl by ml :=n&nl for l=1, ..., q. Then,
since each Ui is a W-space on Ii , the dimension of S is equal to n+m+1,
with m :=�q

l=1 ml .

Definition 3.1. The space S defined above is called the W-spline space
associated with both the sequence U0 , ..., Uq of W-spaces and the sequence
A1 , ..., Aq of matrices.
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For each l=1, ..., q, let us complement the matrix Al so as to create a
matrix Ml=(m l

ij) ij=0, ..., n belonging to M, with the additional requirement
that

ml
ij=0, i=0, ..., n l , j=n l+1, ..., n. (3.2)

Now, consider the piecewise smooth W-space U constructed with these
matrices Ml as in Section 2, and U* its dual space. Clearly, due to (3.2),
we have

U/S. (3.3)

On account of (3.2), equality (2.13) proves that, in the dual space U*,
the connection matrices Ml*=(m ij*

l)ij=0, ..., n satisfy

mij*
l=0, i=0, ..., ml&1, j=ml , ..., n. (3.4)

The structures of Ml and Ml* are illustrated below for n=4 and nl=2.

1 0 0 0 0 1 0 0 0 0

} } } 0 0 } } 0 0 0

Ml= } } } 0 0 Ml*= } } } } 0

} } } } 0 } } } } 0

} } } } 1 } } } } 1

In other words, (3.4) means that Ml* has a block lower triangular struc-
ture. Therefore, for l=1, ..., q, there exists a square matrix Al* of order m l

(with (1, 0, ..., 0) as its first row) such that

2ml&1U*(t+
l )=Al* } 2ml&1U*(t&

l ) for all U* # U*. (3.5)

Moreover, Ml* being regular, so is Al*. Accordingly, U* # U* vanishes on
(t+

l )ml iff it vanishes on (t&
l )ml. If so, we shall simply say that it vanishes

on (tl)
ml.

On the other hand, given S # S and i # [0, ..., q], since U is a piecewise
smooth W-space, there exists a unique element of U which coincides with
S on Ii .

Proposition 3.2. Given a spline function S # S and i # [0, ..., q], let us
denote by S� i the unique element of U which satisfies S� i | Ii

=S | Ii
. Then, for

l=1, ..., q,

[S� l , 9*]=[S� l&1 , 9*]

for all 9* # U* which vanishes on (tml
l ).
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Proof. Since S # S, it satisfies (3.1), which can also be written

2nl
S� l (t+

l )=Al } 2nl
S� l&1 (t&

l ), (3.6)

due to the fact that S� l&1 and S� l coincide with S on Il&1 and Il respectively.
On the other hand, functions S� l&1 and S� l belong to U/S. Accordingly,
we have

2nl
S� l&1 (t+

l )=Al } 2nl
S� l&1 (t&

l ), 2nl
S� l (t+

l )=Al } 2nl
S� l (t&

l ). (3.7)

Comparing (3.6) and (3.7), we obtain

2nl
S� l (t+

l )=2nl
S� l&1 (t+

l ), 2nl
S� l (t&

l )=2nl
S� l&1 (t&

l ). (3.8)

Hence, the announced result is a consequence of Theorem 2.14. K

3.2. Admissible Tuples

With the sequence of multiplicities m1 , ..., mq (and, in addition, for the
end points m0=mq+1 :=n+1), let us associate the corresponding knot
vector,

T :=(tm0
0 tm1

1 } } } tmq
q tmq+1

q+1 ), (3.9)

where the notation tmi
i means that ti is repeated mi times. Moreover,

associated with an arbitrary p-tuple T # Ip , we consider the p-tuple Tord

composed of the same elements as T, but arranged in ascending order.
Following the multiplicative notation introduced above, it can be written
Tord=({+1

1 } } } {+r
r ), with positive integers + i and {1<{2 } } } <{r .

Definition 3.3. Let T be an element of I p, p�n+1, with Tord=
({+1

1 } } } {+r
r ). Then, T will be said to be admissible with respect to the knot

vector T if every ti (1�i�q) belonging to ri[{1 , {r] is repeated at least mi

times in T.

The notation ri[:, ;] stands for the relative interior of the interval
[:, ;], i.e., ]:, ;[ when :<; and [:] when :=;. Therefore, for i=0 or
i=q+1, the p-tuple (t p

i ) is admissible for all p�n+1, whereas for
1�i�q, (t p

i ) is admissible iff p�mi . In particular, since the multiplicity
at each interior knot is supposed to be less than or equal to n, the k-tuple
(tn) is admissible whatever the point t # I may be.

Definition 3.4. If T is an admissible p-tuple, p�n, its domain is
defined as

D(T) :=[t # I�(t, T) is admissible]. (3.10)
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Lemma 3.5. Let T be an admissible p-tuple, p�n. Then, D(T) is a
union of consecutive intervals Ii , i.e.,

D(T)= .
i # J(T)

Ii , (3.11)

where J(T) is a nonempty subset of consecutive integers.

Proof. Let N(T) denote the set of all integers i, 1�i�q, such that
mi>0 and that t i appears at least mi times in T. Let us set
Tord=({+1

1 } } } {+r
r ). Two possibilities must be examined.

(1) N(T)=<. Let i be the greatest integer such that mi>0 and
ti�{1 , and i+s the smallest integer such that m i+s>0 and ti+s�{r . On
account of both the admissibility of T and the fact that N(T)=<, we
have s�1 except when T=(t p

0) or T=(t p
q+1). If for instance T=(t p

0),
then clearly D(T)=[t0 , tk], where k is the smallest positive integer
such that mk>0. On the other hand, if s�1 one can easily check that
D(T)=[ti , t i+s], i.e., J(T)=[i, ..., i+s&1].

(2) N(T){<. In that case, we have D(T)=[ti , ti+s], where i
denotes the greatest integer such that mi>0 and ti<Min N(T), and i+s
the smallest integer such that mi+s>0 and t i+s>Max N(T). K

Proposition 3.6. Given an admissible n-tuple T # I n, with Tord=
({+1

1 } } } {+r
r ), and =1 , ..., =r such that {=i

i # I, let 9* be an element of U* which
vanishes on each ({=i

i )+i , i=1, ..., r. Then, with the same notations as in
Proposition 3.2, all the quantities [S� l , 9*], l # J(T), are equal.

Proof. Suppose that J(T) contains two consecutive integers l&1 and
l, 1�l�q. Then, T being admissible, tl appears at least ml times in T. So,
there exists an integer i0 # [1, ..., r] such that {i0

=t l and we have +i0
�m l .

Since 9* is assumed to vanish on ({=i 0
i0

)
+i 0, it vanishes on tml

l . On account
of Proposition 3.2, this ensures the equality

[S� l&1 , 9*]=[S� l , 9*]. K (3.12)

3.3. Marsden-Type Identities

Theorem 3.7. Let (S&n , ..., Sm) be a basis of S. Then, there exist
n+m+1 functions W*&n , ..., W*m # U* such that

E(x, y)= :
m

i= &n

Si (x) Wi*(y) for all x, y # I, (3.13)

where E is the reproducing function associated with U. These functions
W*&n , ..., W*m span the space U*.
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Proof. For a given y # I, since function E( } , y) belongs to U, it also
belongs to S. Let us denote its coordinates in the basis (S&n , ..., Sm) by
W*&n (y), ..., W*m (y):

E( } , y)= :
m

i= &n

Wi*(y)S i . (3.14)

By selecting n+m+1 points x&n , ..., xm # I such that det(S i (x j)) i, j= &n, ..., m

{0, we can deduce from (3.14) that each Wi* is a linear combination of
E(xj , } ), j=&n, ..., m. Hence, Wi* is an element of U*.

On the other hand, since E is the reproducing function of U, the space
U* is spanned by all functions E(x, } ), x # I. Consequenly, on account of
(3.13), it is also spanned by (W*&n , ..., W*m). K

Remark 3.8. Formula (3.13) is a Marsden-type identity. It has been
obtained from the reproducing function associated with the (n+1)-dimen-
sional piecewise smooth W-space U/S. But this space U is determined by
the choice of the matrices Ml . So, different ways of complementing the Al's
into elements of M (with the requirement (3.2)) will lead to different
Marsden-type identities related to the same W-spline space S and the
same basis S&n , ..., Sm of S.

More generally, whatever its dimension, each piecewise smooth W-space
U contained in S provides such an identity. As a simple example, let us
consider the space S of C n&1 polynomial splines of degree n defined on I.
Then, for a given &�n, the space U :=P& of all polynomials of degree less
than or equal to & defined on I is contained in S. Here m=q and one
corresponding Marsden-type identity can be written

(x&y)&

&!
# :

q

i=&n

Ni (x) Wi*(y), x, y # I, (3.15)

where Ni , i=&n, ..., q, denotes the classical B-spline basis of degree n,
each Wi* being a polynomial of degree less than or equal to &. It is now
well-known that the B-spline basis is the dual basis of the linear forms on S

,i : S # S [ s(ti+1 , ... t i+n), i=&n, ..., q,

where s is the blossom of S. Therefore, Wi*(y) is the value of the blossom
of function ( } &y)&�&! at (ti+1 , ..., ti+n), i.e.,

Wi*(y)=
1

&!( n
&)

:

K/[i+1, ..., i+n]
|K |=&

`
j # K

(tj&y). (3.16)

The classical Marsden's identity corresponds to the case &=n.
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4. PIECEWISE SMOOTH EC-SPACES

A piecewise smooth W-space U on I is said to be a piecewise smooth EC
space on I if, for i=0, ..., q, its restriction Ui to Ii is an extended Chebyshev
space (shortly, EC) space on Ii .

4.1. EC-Spaces and Weight Functions

In this subsection, we shall give a compact presentation of the necessary
tools on Chebyshev spaces. For the proofs and more details, see for
instance [6, 15, 26].

Let J be a closed bounded real interval and E be an (n+1)-dimensional
subspace of C�(J). Then, E is said to be an extended Chebyshev space on
J if any nonzero element of E has at most n zeros (counted with multi-
plicities) on J, or, equivalently, if a given basis (E0 , ..., En) of E satisfies

}
E0 ({0) } } } E (+0&1)

0 ({0) E0 ({1) } } } E (+r&1)
0 ({r)

}{0 (4.1)
E1 ({0) E (+0&1)

1 ({0) E1 ({1) } } } E (+r&1)
1 ({r)

b . . . b b . . . b
En ({0) } } } E (+0&1)

n ({0) En ({1) } } } E (+r&1)
n ({r)

for all distinct {0 , ..., {r # J, and all positive integers +0 , ..., +r whose sum is
equal to n+1. Equivalently, each function E # E is completely determined
as soon as the quantities E ( j )({ i), i=0, ..., r, j=0, ..., +i&1, are known,
where the {i's and the +i's are chosen as above.

Observe that any EC space on J is a W-space on J. A classical result
([6]) states that E is an (n+1)-dimensional EC space on J iff there exist
n+1 positive functions w0 , ..., wn # C�(J) such that

E :=Ker DLn , (4.2)

D standing for the ordinary differentiation operator, and the differential
operators L0 , ..., Ln being defined recursively on C�(J) by

L0E :=
1

w0

E, LiE :=
1
wi

(Li&1E)$, i=1, ..., n. (4.3)

Then, (w0 , ..., wn) is said to be a system of weight functions associated with
E, which we shall write E=EC(w0 , ..., wn). For instance, the space Pn of
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polynomials of degree less than or equal to n is the EC space on R
associated with constant weight functions. Let us observe that different
systems of weight functions may lead to the same EC space.

The dual space of an EC space is also an EC space (see [15]). More
precisely, if E=EC(w0 , ..., wn), its dual space E* is the EC space associated
with the weight functions ŵ0 , ..., ŵn given by

ŵ0 :=
1

w0 } } } wn
, ŵi :=wn+1&i , i=1, ..., n. (4.4)

Let us consider the operators L� j , j=0, ..., n, which are defined from ŵ0 , ..., ŵn

similarly to (4.3). Then, any basis (E0 , ..., En) of E and its dual system
(E0*, ..., En*), satisfy

LE9 (t)T } L� E9 * (t)=R for all t # J, (4.5)

where, for t # J, LE9 (t) and L� E9 * (t) denote the square matrices of order n+1
defined by

(LE9 (t)) i, j := Lj Ei (t), (L� E9 * (t)) i, j :=L� j Ei*(t), i, j=0, ..., n, (4.6)

In relation (4.5), R stands for the antidiagonal matrix (1, ..., (&1)n) intro-
duced in (2.25). For the proof of this result, we refer to [15].

4.2. The Canonical Bilinear Form Associated with a Piecewise Smooth EC
Space

In the following, U will denote a piecewise smooth EC space of dimen-
sion n+1. Again, the connections are supposed to be expressed by (2.5),
with connection matrices assumed to belong to M. For each i=0, ..., q, we
can select a system of positive weight functions w i

0 , ..., w i
n # C�(I i) so that

Ui=EC(w i
0 , ..., w i

n). Moreover, without any loss of generality, we can
assume that

wl&1
j (t l)=w l

j (t l), j=0, ..., n, l=1, ..., q. (4.7)

We shall denote by L i
j , j=0, ..., n, the differential operators on C�(I i)

defined from the weight functions w i
0 , ..., w i

n by means of formulae similar
to (4.3). Let us now introduce the following notations. Given U # U, x # I,
and =, such that x= # Ii ,

4nU(x=) :=(Li
0U(x), L i

1 U(x=), ..., L i
n U(x=))T, (4.8)
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the first term of the right hand side of (4.8) being well-defined because of
(4.7). Moreover, if (U0 , ..., Un) is a basis of U, extending (4.6), we shall set,
for x= # Ii ,

LU9 (x=) :=\
L i

0U0 (x) L i
1U0 (x=) } } } L i

nU0 (x=)

+ . (4.9)
L i

0U1 (x) L i
1 (U1 (x=) } } } L i

nU1 (x=)

b b . . . b
L i

0Un (x) L i
1Un (x=) } } } L i

nUn (x=)

Let us now consider the weight functions (ŵ i
0 , ..., ŵ i

n) defined on I i by

ŵ i
0 :=

1
w i

0 } } } w i
n

, ŵi
j :=w i

n+1& j , j=1, ..., n. (4.10)

As in (4.3), with (ŵ i
0 , ..., ŵ i

n) we can associate differential operators on
C�(I i) that we shall denote by L� i

j , j=0, ..., n. From these operators, given
x= # I, it will be possible to define both 4� n U*(x=) for any U* # U* similarly
to (4.8), and L� U9 *(x=) for any basis (U0*, ..., Un*) of U* similarly to (4.9).
Then, the results recalled in the previous subsection lead to the following
statement.

Proposition 4.1. If U is a piecewise smooth EC space such that
Ui=EC(w i

0 , ..., w i
n), then its dual space U* is a piecewise smooth EC space

such that Ui*=EC(ŵ i
0 , ..., ŵ i

n). Moreover, any basis (U0 , ..., Un) of U and its
dual system (U0* , ..., Un*) satisfy

LU9 (x=)T } L� U9 * (x=)=R for all x= # I. (4.11)

On the other hand, according to the definition of the operators L i
j , we

can write

4nU(x=)=Cn (x=) } 2n U(x=), (4.12)

where, for x= # I i , Cn (x=) is a lower triangular matrix the diagonal of which
is

\ 1
w i

0 (x) } } } w i
j (x)+ j=0, ..., n

. (4.13)

Now, instead of using the ordinary derivatives, the connections in the space
U can be expressed by means of the differential operators L i

j . More
precisely, the space U can be described as the space of all functions
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U: I � R the restriction of which to Ii belongs to Ui=EC(w i
0 , ..., w i

n),
i=0, ..., q, and which satisfy

4nU(t+
l )=Nl } 4n U(t&

l ), (4.14)

where

Nl :=Cn (t+
l ) } Ml } Cn (t&

l )&1. (4.15)

On account of (4.15), (4.13), and (4.7), matrix Nl is regular and has the
same first row and last column as Ml . Proposition 4.1 leads to the following
result.

Corollary 4.2. If the connections in U are given by (4.14), where
N1 , ..., Nq # M, the connections in the dual space U* are given by

4� nU*(t+
l )=Nl* } 4� nU*(t&

l ), (4.16)

where matrices N1*, ..., Nq* # M and are defined by

Nl* :=RT } N&T
l } R. (4.17)

Using Theorem 2.6, we can also obtain a new expression of the canonical
bilinear form.

Corollary 4.3. For any U # U and any U* # U*, we have

[U, U*]=4nU(a=)T } R } 4n U*(a=), (4.18)

for any a= # I.

Proof. The proof is similar to that of Proposition 2.10. Given a basis
(U0 , ..., Un) of U and its dual system (U0*, ..., Un*), from (2.16) it can be
proved that, for any U # U and any U* # U*,

[U, U*]=4nU(a=)T } LU9 (a=)&1 } L� U9 * (a=)&T } 4� nU*(a=). (4.19)

Let us choose the basis (U0 , ..., Un) of U characterized by LU9 (a=)=In+1 .
By (4.11), its dual system satisfies L� U9 *(a=)=R. Therefore, in that case,
(4.19) reduces to (4.18) on account of the equality R&T=R. K

Remarks 4.4. (i) Let us observe that (4.18) can also be written

[U, U*]= :
n

k=0

L i
kU(a=)(&1)n&k L� i

n&kU*(a=) (4.20)
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for all a # I such that a= # Ii . In the piecewise polynomial case, i.e., when all
the weight functions associated with each section are constant, this formula
is nothing but (2.30).

(ii) In particular, the previous result implies that the right hand side
of (4.20) is independent not only of the chosen subinterval Ii and of the
chosen point a provided that a= # Ii , but also of the weight functions
(w i

0 , ..., w i
n) defining Ui which are involved in (4.20) through the L i

j 's and
the L� i

j 's.

5. APPLICATION TO BLOSSOMING

In this section we shall use a fundamental result due to P. J. Barry [1]:
in case the connection matrices (with respect to the differential operators
Li

j) are lower triangular and totally positive (i.e., all their minors are non-
negative), then the number of zeros of any nonzero element of an (n+1)-
dimensional piecewise smooth EC space is bounded by n.

5.1. Blossoming

As in the previous section, U will denote the piecewise EC space such
that Ui :=EC(w i

0 , ..., w i
n), i=0, ..., q, in which the connections are expressed

either by (2.5) or (4.14). Again, the weight functions are assumed to satisfy
(4.7). From now on, we suppose that:

v for i=0, ..., q, w i
0#1 on Ii (which implies, by applying (4.2) that Ui

contains the functions constant on Ii),

v for l=1, ..., q, the connection matrix Nl is regular and lower tri-
angular, its first and last diagonal elements are equal to 1 and its first
column is equal to (1, 0, ..., 0)T (this latter assumption implying that U also
contains the constant functions).

Under these assumptions, by (4.15), the corresponding matrices Ml are
also lower triangular. Therefore, if a function U # U vanishes at t+

l with
multiplicity r�n, it also vanishes at t&

l with the same multiplicity and con-
versely. If so, tl will simply be said to be a zero of order r of U, and U to
vanish at tr

l . Moreover, since U is a piecewise smooth W-space on I any
zero of U on I is necessarily of order less than or equal to n, unless U is
the zero function. Let us denote by Z(U) the upper bound (possibly
infinite) of the number of zeros (counted with multiplicities) of the nonzero
elements of the space U.

The assumptions on Nl imply that Nl*=RT } N l
&T } R is also lower tri-

angular so that the number Z(U*) is also well-defined. Moreover, observe
that the last row of Nl* is equal to (0, ..., 0, 1).
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Let us choose once and for all a basis (U0 , ..., Un) in U, with U0=1, and
denote its dual system by (U0*, ..., Un*). Consider the n-dimensional space
V* :=span(U1*, ..., Un*). Since w i

0#1 on I i , one can verify that the restric-
tion Vi* of the space V* to Ii is the dual space of DUi . Now, since
Ui :=EC(w i

0 , ..., wi
n), by using the results recalled in Subsection 4.1, it can

be checked that DUi=EC(w i
1 , ..., w i

n) and Vi*=EC(ŵ i
0 , ..., ŵ i

n&1), where
the weight functions ŵ i

0 , ..., ŵi
n&1 are those defined in (4.10). On account of

the last rows of matrices Nl*, we can conclude that V* is an n-dimensional
piecewise smooth EC space on I, in which the connection conditions are
given by

4� n&1V*(t+
l )=Q l } 4� n&1V*(t&

l ), l=1, ..., q, (5.1)

where, for l=1, ..., q, Ql is the n_n lower triangular regular matrix
obtained by suppressing the last row and the last column of Nl*. Therefore,
the number Z(V*) is also well-defined.

Lemma 5.1. In addition to the assumptions developed above, suppose that
each Nl , l=1, ..., q is totally positive. Then we have Z(U)�n, Z(U*)�n
and Z(V*)�n&1.

Proof. The total positivity of Nl implies that of Nl* [1, Theorem 5],
hence also that of Ql . Therefore, Theorem 8 of [1] gives the desired result,
directly for the two spaces U and U*, and after slightly adapting its
assumptions for the space V*. K

Throughout this section we additionally suppose that:

v for l=1, ..., q, the connection matrix Nl is totally positive.

In fact, Lemma 5.1 means that under this total positivity assumption on the
connection matrices, the (n+1)-dimensional piecewise EC space U behaves
like an (n+1)-dimensional EC space. It is actually the key-point which will
enable us to develop the blossoming principle in piecewise EC spaces by
extending all the results obtained in [19] for a single EC space.

Condition Z(U)�n can be equivalently interpreted as follows: a func-
tion U # U is uniquely determined by n+1 data U({i), U$({=i

i ), ...,
U (+i&1)({=i

i ), i=0, ..., r, for given distinct points {0 , ..., {r # I, given positive
integers +0 , ..., +r whose sum is equal to n+1 and given = i's such that {=i

i # I.
A similar property can be stated for U* and V*.

If an n-tuple T satisfies Tord=({+1
1 } } } {+r

r ), a function 9* # U* will be
said to vanish (with multiplicities) on T if 9*(k)({i)=0 for k=0, ..., +i&1,
i=1, ..., r. Although expressed in a different way, the following result is an
implicit consequence of [1, Th. 9].
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Lemma 5.2. Given an n-tuple T # I n, there exists a unique element
9*T # U* such that

9*T vanishes on T, [1, 9*T]=1. (5.2)

Proof. For any 9*=�n
i=0 :i*U i* # U*, [1, 9*]=[U0 , 9*]=:0*.

Then, 9* satisfies the normalization condition [1, 9*]=1 (i.e., :0*=1), iff
the function 8* :=9*&U0* belongs to the n-dimensional space V*. So, if
Tord=({+1

1 } } } {+r
r ), it only remains to prove that, for a given choice of =i's,

there exists exactly one element 8*T # V* such that

8T*
( j )({=i

i )=&U0*
( j )({=i

i ), 1�i�r, 0� j�+i&1.

As noticed above, this is a direct consequence of Lemma 5.1. K

Definition and Theorem 5.3. Let F be an element of U. By setting, for
all n-tuple T # I n,

f (T) :=[F, 9*T], (5.3)

where 9*T is the only element of U* satisfying (5.2), we define a function
f: I n � R which will be called the blossom of F. It is a symmetric function
such that

f (xn)=F(x) for all x # I. (5.4)

Proof. The symmetry of f is clear. On the other hand, since E is the
reproducing function associated with U, function E(x, } ) belongs to U* and
vanishes on (xn). From [1, E(x, } )]=1(x)=1, we can thus conclude that

9*(xn)=E(x, } ). (5.5)

So, by (5.3), f (xn) :=[F, E(x, } )]. The reproducing property of E leads to
(5.4). K

Remarks 5.4. (i) According to (4.20), the normalization condition
[1, 9*T]=1 can be written

L� i
n9*T (a=)=(&1)n, (5.6)

for any i # [0, ..., q] and any a such that a= # I i . For instance, in the
piecewise polynomial case (5.6) yields 9T*

(n)(a=)#(&1)n.
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(ii) From (4.20) it can also be deduced that the blossom f of F # U

can also be written as

f (T)= :
n

k=0

L i
k U(a=)(&1)n&k L� i

n&k9*T (a=)

for all i=0, ..., s and all a= # Ii . (5.7)

This is the expression used by P. J. Barry [1] in order to introduce a
notion of blossom. Contrary to what such a formula might seem to induce,
according to Definition 5.3, the blossom does not depend on the particular
systems of weight functions defining the EC spaces Ui .

(iii) As a first obvious example, observe that the blossom of function
1 is equal to 1 everywhere on I n: Indeed, this is a clear consequence of the
normalization condition [1, 9*T]=1.

(iv) For all y # I, the blossom e( } ; y): I n � R of E( } , y) being
defined by e(T; y) :=[E( } , y), 9*T], the reproducing property of E leads
to

e(T; y)=9*T (y). (5.8)

5.2. Pseudo-affinity of the Partial Blossoms

In this subsection, we shall prove that the blossom f of any F # U is a
pseudo-affine function with respect to each variable, in the sense indicated
by the following theorem.

Theorem 5.5. Given an (n&1)-tuple T # I n&1 and two distinct points a,
b in I, there exists a function ; (depending on T, a, b), piecewise smooth and
strictly monotone on I, with ;(a)=0, ;(b)=1, such that the blossom f of
any F # U satisfies, for all x # I,

f (T, x)=(1&;(x)) f (T, a)+;(x) f (T, b). (5.9)

Proof. Since, for all x # I, f (T, x)=[F, 9*(T, x)], (5.9) will be a
straightforward consequence of the following three lemmas, the first two of
them having already been stated by P. J. Barry in a different form [1]. K

Lemma 5.6. Given an (n&1)-tuple T # I n&1, with Tord=({+1
1 } } } {+r

r ),
and two distinct points a, b in I, the function 9* :=9*(T, a)&9*(T, b) vanishes
exactly on T, in the sense that 9* both vanishes (with multiplicities) on T,
and satisfies

9*(x){0 if x � [{1 , ..., {r], 9* (+i)({=i
i ){0, i=1, ..., r. (5.10)
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Proof. By Lemma 5.1, Z(U*)�n. Consequently, since a{b, on
account of their zeros, the two functions 9*(T, a) and 9*(T, b) are linearly
independent. Therefore, in particular 9* #3 0. Due to the two normaliza-
tion conditions [1, 9*(T, a)]=1 and [1, 9*(T, b)]=1, 9* is thus a nonzero
element of the space V*. Consequently, according to Lemma 5.1, it has at
most (n&1) zeros in I. Now, 9*(T, a) and 9*(T, b) both vanishing (with mul-
tiplicities) on the (n&1)-tuple T, so does 9*. Consequently, it cannot
vanish elsewhere (with multiplicities), in the sense of (5.10). K

Lemma 5.7. With the same assumptions as in Lemma 5.6, for all x # I, we
have

9*(T, x)=:(x) 9*(T, :)+;(x) 9*(T, b) , (5.11)

where, if x � [{1 , ..., {r],

:(x) :=
9*(T, b) (x)

9*(T, b) (x)&9*(T, a) (x)
, ;(x) :=

9*(T, a) (x)
9*(T, a) (x)&9*(T, b) (x)

, (5.12)

and, for i=1, ..., r,

:({i) :=
9* (+i)

(T, b)({=i
i )

9* (+i)
(T, b)({

=i
i )&9* (+i)

(T, a)({
=i
i )

, ;({i) :=
9* (+i)

(T, a)({
=i
i )

9* (+i)
(T, a)({

=i
i )&9* (+i)

(T, b)({=i
i )

.

(5.13)

Proof. Since Z(U*)�n, the space of all functions in U* vanishing on
T is 2-dimensional. Therefore, there exist two unique real numbers :(x),
;(x) such that

9*(T, x)=:(x) 9*(T, a)+;(x) 9*(T, b) . (5.14)

In order to determine these two numbers, observe that (5.14) easily yields
a first linear relation between them by means of the normalization condi-
tions on the three functions 9*(T, x) , 9*(T, a) , and 9*(T, b) :

:(x)+;(x)=1. (5.15)

With an argument similar to that used in [19, Lemma 4.10] (to which
we refer for more details), a second one can be obtained from the fact that
9*(T, x) vanishes on (T, x). This leads either to

:(x) 9*(T, a) (x)+;(x) 9*(T, b) (x)=0, (5.16)

or to

:(x) 9* (+i)
(T, a) ({=i)

i )+;(x) 9* (+i)
(T, b) ({=i

i )=0, (5.17)
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depending on whether x � [{1 , ..., {r] or x={i , 1�i�r. In either case, due
to Lemma 5.6, the determinant of the so obtained system is not equal to 0,
and solving it gives (5.12) and (5.13). K

Lemma 5.8. Functions : and ; defined by (5.12) and (5.13) are piecewise
smooth and strictly monotone on I.

Proof. The unicity of the couple (:(x), ;(x)) satisfying (5.14) for a
given x # I proves that the two functions : and ; are well-defined on I (i.e.,
they do not depend on possible ='s). As to why these two functions are C�

on each subinterval Ii , we refer to [16].
Now, if x1 and x2 are two distinct points in I, ;(x1){;(x2). Other-

wise, we would have 9*(T, x1)=9*(T, x2) and this nonzero element of the
space U* would have n+1 zeros in I, which is contrary to what Lemma 5.1
says. Hence, ; being one-to-one and C0 on I, it is a strictly monotone
function. K

5.3. Chebyshev�Be� zier Points and Chebyshev�Bernstein Basis

Proposition 5.9. Given n+1 n-tuples T0 , ..., Tn # In and n+1 functions
D0 , ..., Dn # U, the following four statements are equivalent:

(i) E(x, y)=�n
i=0 Di (x) 9*Ti

(y) for all x, y # I,

(ii) the blossoms d0 , ..., dn of functions D0 , ..., Dn satisfy

di (Tj)=$ij , i, j=0, ..., n, (5.18)

(iii) (9*T0
, ..., 9*Tn

) is a basis of U* and (&1)n (D0 , ..., Dn) is its dual
system,

(iv) for all F # U,

F= :
n

i=0

f (Ti) D i . (5.19)

Moreover, as soon as these properties hold, we have

:
n

i=0

Di=1. (5.20)

Proof. The equivalence between the first three properties is just a conse-
quence of Proposition 2.9 because

di (Tj) :=[Di , 9*Tj
], i, j=0, ..., n.
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Suppose that (i) holds. Then, since E is the reproducing function
associated with U, we have, for all F # U and all x # I,

F(x)=[F, E(x, } )]= :
n

i=0

Di (x)[F, 9*Ti
],

which is exactly (5.19).
Conversely, when applying (5.19) to E( } , y), y # I, we obtain

E( } , y)= :
n

i=0

e(Ti ; y) Di . (5.21)

According to (5.8), (5.21) is nothing but condition (i).
Finally, as soon as (5.19) is valid, (5.20) is obtained by applying it to

function 1. K

Proposition 5.10. Let a&n+1�a&n+2� } } } �a0<a1� } } } �an be 2n
points of I and consider the following n-tuples

Ti :=(ai&n+1 , ..., a i), i=0, ..., n. (5.22)

Then, the n+1 functions 9*Ti
, i=0, ..., n, form a basis of U* and the corre-

sponding basis (D0 , ..., Dn) (defined, for instance, by (i) of Proposition 5.9)
satisfies Di (x)>0 for all x # ]a0 , a1[.

The proof of this result will be a consequence of the following lemma
which is an extension of the classical de Boor algorithm.

Lemma 5.11. With the same assumptions as in Proposition 5.10, given
x # I, the value at x of any F # U can be obtained as an affine combination
of the points f (T0), ..., f (Tn), the coefficients of which do not depend on F.
Moreover, these coefficients are strictly positive as soon as x # ]a0 , a1[.

Proof. For given integers k and i, 0�k�n&1, 0�i�n&k&1, we
have ai&n+1+k�a0<a1�a i+1 . Therefore, we can apply Theorem 5.5 with
the (n&1)-tuple T=(ai&n+2+k , ..., a i , xk) as

f (T, x)=(1&;k
i (x)) f(T, ai&n+1+k)+;k

i (x) f(T, ai+1), x # I,

(5.23)

where function ;k
i does not depend on F # U and ;k

i (x) # ]0, 1[ for
x # ]ai&n+1+k , ai+1[.

For a given x # I, let us introduce the real numbers

Pk
i (x) := f (ai&n+1+k , ..., ai , xk), i=0, ..., n&k. (5.24)
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According to (5.23), these points Pk
i (x) satisfy the recursive relation

Pk+1
i (x)=(1&;k

i (x)) Pk
i (x)+;k

i (x) Pk
i+1 (x),

k=0, ..., n&1, i=0, ..., n&k&1. (5.25)

Furthermore, we have in particular

P0
i (x)= f (Ti), i=0, ..., n, Pk

0(x)= f (xn)=F(x). (5.26)

Relations (5.25) describe what we shall refer to as the Chebyshev�de Boor
algorithm (related to the 2n chosen points). This algorithm allows us to
compute (in n steps) the value of a function F # U at a point x # I as an
affine combination of the points f (T0), ..., f(Tn), this affine combination
being in fact a strictly convex one as soon as x # ]a0 , a1[ since ]a0 , a1[/
]ai&n+1+k , a i+1[ for all k=0, ..., n&1, i=0, ..., n&k&1. Actually, the
coefficients of these combinations do not depend on the function F since
this holds for each ;k

i . K

Proof of Proposition 5.10. As a consequence of the previous lemma, the
linear map 8: U � Rn+1 defined by

8(F )=( f (Ti)) i=0, ..., n (5.27)

is one-to-one on U. Using the definition of the blossom, this means that the
following n+1 linear forms on U

[ } , 9*Ti
], i=0, ..., n, (5.28)

are linearly independent, which implies the linear independence of
9*T0

, ..., 9*Tn
.

In application of the Chebyshev�de Boor algorithm, for a given i, and a
given x # ]a0 , a1[, Di (x) is a strictly convex combination of the real
numbers di (Tj), j=0, ..., n. Through (5.18), these real numbers are all equal
to 0 except that of index i which is equal to 1. Hence, Di (x)>0. K

As a particular case of Proposition 5.10, we can take aj=min(a, b) for
j= &n+1, ..., 0 and aj=max(a, b) for j=1, ..., n, where a, b are two dis-
tinct points of I. Therefore, the n+1 functions 9*(an&ibi) , i=0, ..., n, form a
basis of U*.

Definition 5.12. Given two distinct points a, b # I, and F # U, the n+1
points

Pi := f (an&ibi), i=0, ..., n, (5.29)
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will be called the Chebyshev�Be� zier points of F with respect to (a, b) and the
basis (B0 , ..., Bn) of U characterized by

E(x, y)= :
n

i=0

Bi (x) 9*(an&ibi) (y), x, y # I, (5.30)

will be called the Chebyshev�Bernstein basis with respect to (a, b).

In that particular case, the Chebyshev�de Boor algorithm described in
the proof of Lemma 5.11 will be called the Chebyshev�de Casteljau algo-
rithm with respect to (a, b): it allows the computation in n steps of the
values of any F # U from its Chebyshev�Be� zier points with respect to (a, b).

From Proposition 5.9 it results that the Chebyshev�Be� zier basis satisfies
bi (an& jb j )=$ij , i, j=0, ..., n, or equivalently, that

F= :
n

i=0

f (an&ibi)Bi for all F # U. (5.31)

Moreover, Proposition 5.10 proves that, for i=0, ..., n, Bi (x)>0 as soon as
x is strictly located between a and b.

Theorem 5.13. The Chebyshev�Bernstein basis with respect to (a, b) is
characterized by the following two properties

(i) for all i=0, ..., n, Bi vanishes on (aibn&i ),

(ii) 1=�n
i=0 Bi .

Proof. We already know that 1=�n
i=0 Bi . For a given integer i,

0�i�n, the Chebyshev�Bernstein function Bi is characterized by the
equalities

[Bi , 9*(an& j b j )]=$ij , j=0, ..., n. (5.32)

From Proposition 5.10, we know that the n+1 functions 9*(an& j b j) ,
j=0, ..., n are linearly independent. Therefore, for a given integer i, func-
tions 9*(an& jb j) , j=0, ..., i&1 form a basis of the i-dimensional space

A1* :=[U* # U* | U* vanishes on (an&i+1)].

Similarly, functions 9*(an& jb j ) , j=i+1, ..., n, form a basis of the (n&i)-
dimensional space

A2* :=[U* # U* | U* vanishes on (bi+1)].
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Consequently, it results from (5.32) that Bi belongs to A1*% & A2*%. This
leads to (i) since, by Corollary 2.13,

A1*% :=[U # U | U vanishes on (a i)],

A2*% :=[U # U | U vanishes on (bn&i )].

Conversely, let 90 , ..., 9n be n+1 elements of U such that 9i vanishes
on (aibn&i), i=0, ..., n. The same argument as previously leads to
[9i , 9*(an& jb j)]=0 for j{i. Consequently, the additional condition
1=�n

i=0 9i clearly implies [1, 9*(an& j b j )]=[9j , 9*(an& j b j)]. Due to the
normalization condition on functions 9*(an& j b j) , we finally have

[9i , 9*(an& jb j)]=$ ij , i, j=0, ..., n,

from which we can conclude that (90 , ..., 9n) is the Chebyshev�Bernstein
basis with respect to (a, b). K

Remark 5.14. (i) Condition (i) in Theorem 5.13 determines Bi up to a
multiplication by a nonzero real number. Actually, Bi is the unique element
U # U which vanishes on (aibn&1) and satisfies the additional condition
[U, 9*(an& i b i)]=1. Now, given a function U # U vanishing on (a i) and a
function U* # U* vanishing on (an&i), we have, by (2.30)

[U, U*]=(&1)n&i U (i)(a=) U*(n&i)(a=). (5.33)

Thus, among all the functions in U which vanish on (aibn&i), Bi is also
characterized by

B (i)
i (a=)=

(&1)n&i

9* (n&i)
(an& i b i ) (a=)

. (5.34)

(ii) For instance, E( } , b) and B0 both vanishing on (bn), there exists
a nonzero real number c such that B0=cE( } , b). Either from (5.34) or
more simply by b0 (an)=B0 (a)=1, we can conclude that

B0=
E( } , b)
E(a, b)

. (5.35)

5.4. Blossoming and Contact

Because of the lower triangular structure of the connection matrices, we
can define the contact of order r�n at any point a # I between two elements
F, G # U by F (i)(a=)=G (i)(a=), i=0, ..., r, for a given = such that a= # I:
indeed, for a=tl , 1�l�q, the latter equalities hold for ==& iff they hold
for ==+.
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As a consequence of Theorem 2.14, we can characterize this contact
between two given elements of U through their blossoms.

Theorem 5.15. Let F, G be two elements of U and f, g their blossoms.
Given a point a # I, the following three statements are equivalent:

(i) F and G have a contact of order r�n at a,

(ii) F and G have the same r+1 first Be� zier�Chebyshev points with
respect to (a, b), i.e.,

f (an&ibi)=g(an&ib i), i=0, .., r, (5.36)

where b is a given point of I, b{a,

(iii) f (T)= g(T) for all n-tuple T containing (an&r).

Proof. By Theorem 2.14, condition (i) is satisfied iff

[F, 9*]=[G, 9*] for all 9* # A*, (5.37)

where A* is the set of all elements of U* vanishing on (an&r). Now,
(9*(an) , ..., 9*(an&r br )) is a basis of A*, and A* is also spanned by the set
of all functions 9*T , where T contains (an&r). Therefore, by linearity,
condition (5.37) is equivalent either to

[F, 9*(an&ibi)]=[G, 9*(an&ibi)], i=0, ..., r,

or to

[F, 9*T]=[G, 9*T] for all T containing (an&r),

which corresponds to conditions (ii) and (iii), respectively. K

6. EC SPLINES

In this section, we shall obtain a number of results already stated by
P. J. Barry [1] (for instance the existence of a B-spline basis). Appearing
here as immediate consequences of the general results contained in the previous
sections, such proofs are very simple and are thus of interest in their own
right.

6.1. The Blossom of a Spline

Let us apply the results of the previous sections to the case of EC splines,
i.e., W-splines whose sections belong to given EC spaces. So, assume that
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v for i=0, ..., q, Ui=EC(1, w i
1 , ..., w i

n), where the weight functions
wi

1 , ..., w i
n # C�(Ii) satisfy the continuous joining condition (4.7),

v for l=1, ..., q, Bl is a totally positive regular lower triangular matrix
of order nl+1, 0�nl�n, with (1, 0, ..., 0)T as its first column. In case n l=n
the last diagonal element of Bl is assumed to be equal to 1.

Denote by S the space of all functions S : � R such that S |Ii
# U i , i=0, ..., q

the connections being given by

4l
nl

S(t+
l )=Bl } 4 l&1

nl
S(t&

l ), l=1, ..., q. (6.1)

Following the process developed in Section 3, each B l will be complemen-
ted so as to create a matrix Nl of order n+1. Assume that

v For l=1, ..., q, Nl is regular, lower triangular, totally positive, its
first column is equal to (1, 0, ..., 0)T and its last diagonal element is equal
to 1.

v U is the piecewise EC space defined from the Nl's as in Section 5,
and U* its dual space. Again, U is contained in S.

The space S being the W-spline space associated with the Ui's and with
the sequence (A1 , ..., Aq) of matrices, where Al :=Cnl

(t+
l )&1 } Bl } Cnl

(t&
l ),

we can use the results obtained in Section 3.

Proposition 6.1. Given a spline function S # S, for any i=0, ..., q,
denote by S� i the unique element of U which satisfies S� i | Ii

=S | Ii
and by s~ i the

corresponding blossom. If T # I n is an admissible n-tuple, then all the
blossoms s~ l , l # J(T) take the same value on T.

Proof. As soon as J(T) contains two consecutive integers l&1 and l,
1�l�q, necessarily tl appears at least ml times in T. Consequently, 9*T
vanishes on (tml

l ). Thus, applying Proposition 3.6 proves that all the quan-
tities [S� l , 9*T ], l # J(T), are equal, which yields the desired result. K

Definition 6.2. With the same notations as in Proposition 6.1, the
symmetric function s defined on any admissible n-tuple T # I n by

s(T) :=s~ l (T) for all l # J(T) (6.2)

will be called the blossom of S.
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Theorem 6.3. The blossom s of any spline S # S is a symmetric function
such that s(xn)=S(x) for all x # I. For any admissible n-tuple T, we have

s(T)= :
n

i=0

4 l
i S(a=)(&1)n&i 4� l

n&i9*T (a=) (6.3)

for any l # J(T), and any a= # Il . Moreover, if (x1 , ..., xn&1) # I n&1 is an
admissible (n&1)-tuple, the function s(x1 , ..., xn&1 , } ) is pseudo-affine in the
following sense: for any distinct points a, b # D(x1 , ..., xn&1), there exists a
function ; (depending on x1 , ..., xn&1 , a, b, but not on S) such that, for all
x # D(x1 , ..., xn&1),

s(x1 , ..., xn&1 , x)=(1&;(x)) s(x1 , ..., xn&1 , a)+;(x) s(x1 , ..., xn&1 , b).

(6.4)

Proof. Given x # Il , S(x)=S� l (x). Moreover, the n-tuple (xn) is
admissible and l # J(xn). So, in particular, s(xn)=s~ l (xn)=S� l (x)=S(x).

Formula (6.3) is thus a straightforward consequence of the definition of
s(T) and of (4.20).

Finally, let us choose an integer l in J(x1 , ..., xn&1). Due to the
definition of admissibility, for all x # D(x1 , ..., xn&1), l belongs to
J(x1 , ..., xn&1 , x). Consequently, according to Definition 6.2,

s(x1 , ..., xn&1 , x)=s~ l (x1 , ..., xn&1 , x).

Now, we can apply Theorem 5.5 to s~ l . K

Remark 6.4. This notion of blossom does not depend on the piecewise
smooth EC space (with totally positive connections) U/S (i.e., on the
way of complementing the connection matrices Bl). Suppose that T # I n is
admissible and that D(T)=[ti , ti+k]. In order to calculate s(T) for any
S # S, it is sufficient to know the restriction of 9*T on [t i , ti+k]. Now, this
restriction does not depend on U. As a matter of fact, because of the
admissibility of T, for a given integer l, i<l<i+k, 9*T vanishes on tml

l .
Hence, if

Nl=\B l

C l

0
D l+ , N l*=\Bl*

C l*
0

Dl*+ ,

the two submatrices Bl* and C l* are not involved in the connection condi-
tion 4� n9*T (t+

l )=N l* } 4� n9*T (t&
l ). Moreover, Dl*=R� T } B&T

l } R� , where R�
is the antidiagonal matrix obtained by suppressing the first ml rows and
last ml columns of R; hence it depends only on Bl .
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6.2. The Lyche�de Boor Algorithm for Splines and Marsden-Type Identities

Let us rename the knot vector T :=(tn+1
0 , tm1

1 , ..., tmq
q , tn+1

q+1) as

T=(x&n , x&n+1 , ..., xn+m+1),

so that, in particular x&i = t0 and xm+1+i = tq+1 for i = 0, ..., n
(m=�q

l=1 ml). When taking any n consecutive points x i out of the knot
vector, we clearly obtain an admissible n-tuple. Let us consider the
n+m+1 following ones

Xj :=(xj+1 , ..., xj+n), j=&n, ..., m. (6.5)

This leads to the following definition.

Definition 6.5. Given an EC spline S # S, the n+m+1 real numbers

Qj :=s(Xj), j=&n, ..., m, (6.6)

will be called the poles of S.

It will be possible to reconstruct a spline S from its poles. This requires
the following two lemmas.

Lemma 6.6. For all j= &n, ..., m, the domain of the n-tuple Xj is given by

D(Xj)=[xj , xj+n+1]. (6.7)

Proof. Let i0=0<i1< } } } <ip<ip+1=q+1 be the sequence of all
integers i # [0, ..., q+1] such that mi>0. Except for j=&n (in which case
X&n=(tn

0)) or j=m (in which case Xm=(tn
n+1)), each Xj can always be

written as

Xj=(t:
ik

tmik+1
ik+1

} } } tmik+r
ik+r

t;
ik+r+1

),

with 0�:<mik
, 0�;<mik+r+1

. If so, we have D(Xj)=[t ik
, t ik+r+1

].
Moreover, if :=0, the left hand point of Xj is xj+1=t ik+1

and we have
xj=tik

. On the contrary, if :>0, xj+1=tik
, but, since :<mik

, we also
have xj=tik

. A similar argument about ; eventually yields (6.7).
On the other hand, clearly D(X&n)=[t0 , ti1

], which can also be written
D(X&n)=[x&n , x1]. Similarly, D(Xm)=[t ip

, tq+1]=[xm , xm+n+1]. K

Lemma 6.7. Given an integer i, 0�i�q, there exist exactly n+1
integers j such that i # J(Xj), namely j= ji&n, ..., ji , where ji :=� i

l=1 ml

(so that j0=0, jq=m).

348 MAZURE AND LAURENT



Proof. Due to the definition of ji , xji
is the greatest knot of nonzero

multiplicity to be less than or equal to ti , whereas xji+1
is the smallest one

to be greater or equal to t i+1 . In other words, ji is the unique integer
satisfying

[ti , ti+1]/[xji
, x ji+1

].

Furthermore, [t i , ti+1]/D(Xj) iff [x ji
, x ji+1

]/D(Xj).
In addition, the previous lemma leads to the equivalence

[xji
, xji+1]/D(Xj) � {xj�x ji

,
xji+1�xj+n+1 .

Now, the two conditions xj�xji
and xjk+1�xj+n+1 clearly hold iff j� jk

and ji+1� j+n+1. K

Let S be an element of S, and Qj , j=&n, ..., m, its poles. We want to
compute S(x) for a given x # I. Actually, if x # I i , this amounts to comput-
ing S� i (x), where, as previously, S� i stands for the only element of U coincid-
ing with S on Ii .

Now, according to both Lemma 6.7 and Definition 6.2, we have

Q j=s~ i (Xj), j= j i&n, ..., ji . (6.8)

Moreover, the 2n consecutive points xj , j= ji&n+1, ..., ji+n, involved in
(6.8) satisfy

xji&n+1�xji&n+2� } } } �xji
�ti<ti+1�xji+1�xji+2� } } } �xji+n . (6.9)

Therefore, we can apply the Chebyshev�de Boor algorithm to function S� i :
thus, S� i (x) can be computed in n steps as a convex combination of the
n+1 consecutive poles Q ji&n , ..., Q ji

and the coefficients of this combina-
tion do not depend on S.

Let us mention that the previous algorithm was first obtained by
T. Lyche starting from recurrence relations for Chebyshev B-splines [12]. We
will therefore refer to it as the Lyche�de Boor algorithm. Observe that in
case all the multiplicities at the knots are equal to zero, (i.e., when S=U),
it is nothing but the Chebyshev�de Casteljau algorithm with respect to the
end points (t0 , tq+1).

As a consequence of the Lyche�de Boor algorithm, the linear map
3: S � Rn+m+1 defined by

3(S)=(s(Xj)) j= &n, ..., m
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is one-to-one on S, hence it is an isomorphism since S is of dimension
n+m+1. Let Nj denote the element of S (the blossom of which will be
denoted by nj) characterized by

nj (Xi)=$ ij , i=&n, ..., m. (6.10)

Then, functions Nj , j=&n, ..., m, form a basis of the EC spline space S,
called the B-spline basis. We shall now derive a number of properties of the
B-spline basis already stated in [1]. This will clearly illustrate the efficiency
of our approach which enables us to determine such properties in a very
simple way.

Applying the Lyche�de Boor algorithm in order to calculate the value
of the B-spline Nj at a given x # I from its poles will provide the sup-
port of this B-spline, i.e., the influence domain of the pole of index j. The
poles of Nj being given by (6.10), we can conclude that

[ti , ti+1]/Supp Nj � j # [ ji&n, ..., j i],

to be compared with Lemma 6.7. Hence

Supp Nj=D(Xj)=[x j , x j+n+1], j=&n, ..., m. (6.11)

Moreover, the Lyche�de Boor algorithm also proves that Nj (x)>0 for
x # ]xj , x j+n+1[.

From the very definition of the B-spline basis, we can conclude that

S= :
m

j=&n

s(Xj) Nj for all S # S. (6.12)

In particular, for any F # U/S, formula (6.12) gives

F= :
m

j=&n

f (Xj) Nj . (6.13)

For instance, 1=�m
j= &n Nj . As an interesting example, we can apply for-

mula (6.13) to E( } , y) # U. On account of (5.8), this provides the following
Marsden-type identity:

E(x, y)= :
m

j=&n

Nj (x) 9*Xj
(y), x, y # I. (6.14)

Of course, in the same EC spline space S, there are many such Marsden-
type identities since there are different sequences Nl , l=1, ..., q constructed
by complementing the connection matrices B l , l=1, ..., q. Such an identity
has already been given by P. J. Barry et al. in the piecewise polynomial
case, when all the multiplicities at the interior knots are equal to 1 [2].
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7. FINAL REMARKS

Let U be a piecewise smooth W-space, U* its dual space, and [ } , } ]
its associated canonical bilinear form. For U=(U 1, ..., U d ) # Ud, and
U* # U*, let us define [U, U*] # Rd by

[U, U*] :=([U 1, U*], ..., [U d, U*]). (7.1)

For a given a= # I, let us denote by (U0 , ..., Un) the basis of U charac-
terized by

U ( j)
i (a=)=$ ij , i, j=0, ..., n. (7.2)

Let us fix 9* # U*. It was proved in Section 2 that

[U, 9*]= :
n

i=0

*iU (i)(a=) for all U # U. (7.3)

Clearly, due to (7.2), the *i's are given by

*i=[Ui , 9*], i=0, ..., n. (7.4)

From (7.1) and (7.3) we can derive

[U, 9*]= :
n

i=0

*iU
(i)(a=) for all U # Ud. (7.5)

On the other hand, let us recall that the osculating flat of order i of
U # Ud at a=, denoted by Osci U(a=), is the affine flat going through the
point U(a) and the direction of which is the linear space spanned by
U$(a=), ..., U(i)(a=). Hence, on account of (7.4) and Corollary 2.12, we can
state the following result.

Lemma 7.1. Given an integer +, 0�+�n, and 9* # U*, the point
[U, 9*] belongs to Oscn&+ U(a=) for all U # Ud iff 9* vanishes on (a=)+

and satisfies [U0 , 9*]=1.

From now on, we suppose that U contains the constant functions. Then,
whatever a and = may be, with a= # I, the function U0 defined in (7.2) (i.e.,
the element of U which is characterized by 2nU0(a=)=(1, 0, ..., 0)T) is
U0=1. As an immediate consequence of Lemma 7.1, we have:
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Proposition 7.2. Let T # I n be a given n-tuple, such that Tord=
({+1

1 } } } {+r
r ). Then, 9* # U* satisfies

[U, 9*] # ,
r

i=1

Oscn&+i
U({=i

i ) for all U # Ud

iff 9* vanishes on ({i)
+i, i=1, ..., r, and satisfies the normalization condition

[1, 9*]=1.

Let us come back to the assumptions of Section 5, which allows us to
develop the blossoming principle in the space U. Then, the blossom of a
function F=(F 1, ..., F d) # Ud will be defined as

f(T) :=( f 1(T), ..., f d(T)), (7.6)

i.e., by (7.1),

f(T) :=[F, 9*T ], (7.7)

where 9*T vanishes on T and satisfies [1, 9*T]=1. Thus, according to
Proposition 7.2, if Tord=({+1

1 } } } {+r
r ),

f(T) # ,
r

i=1

Oscn&+i
F({i) for all F # Ud. (7.8)

Under the same assumptions as in Section 5, it can be proved that, when
F is nondegenerate (i.e., when the affine space spanned by the image of F
is of dimension n), the right hand side of (7.8) consists of a single point
[17, Sect. 6]. In the geometrical approach of the blossoming principle
developed in [17], this point is specifically chosen to define the value of the
blossom of such a nondegenerate function F at T. Hence, the definition of
the blossom through the duality principle presented here and the geometri-
cal one presented in [17] actually lead to the same mathematical object.
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